DUDAR COAL – NOVEL APPROACHES FOR UTILISATION

Pintér-Móricz Ákos^{1,2}, Dr. Ljudmilla Bokányi¹

Institute of Raw Material Preparation and Environmental Processing¹ Research Institute of Applied Earth Sciences²

UNIVERSITY OF MISKOLC FACULTY OF EARTH SCIENCE ENGINEERING TEKH NATURAL RESOURCES SPECIAL COLLEGE OUR CHANGING CLIMATE PROJECT Towards zero carbon emission – new trends in coal application and organic waste

Management

Siófok, Hungary, 12th – 14th May 2022

Introduction

- Novel utilization of sub-bituminous coal: planned to be used in sewage sludge treatment as <u>adsorbents</u>
- Superfast aerobic stabilization of sewage sludge being investigated at Institute of Raw Material Preparation and Environmental Processing of the University of Miskolc
- Adsorption of the water-soluble compounds on the coal surface is a part of this stabilization process
- Before the stabilization process, it was important to determine the adsorption properties of the additive
- Heavy metals can be suitable for determining adsorption properties since they are pollutants and they can be found in sewage sludge, also in dissolved (ionic) form

Humic acid content and adsorption

- Adsorption properties of the coal mainly depend on its oxygen bearing functional groups (-OH, -CHO, C=O, -COOH)
- Structure of the humic acid: contains -OH, -COOH, -NH, phenolic –OH groups
- Good adsorption capacity can be expected from the Bakonyoszlop / Dudar coal (60 m/m % humic acid content was reported .)
- Humic acid is a very valuable constituent in further utilization of the treated sewage sludge
- Investigation of the adsorption capacity: via determining and plotting adsorption isotherms

Characterization of the coal

Two types of Bakonyoszlop coal: slack coal and coal dust

Four different particle size intervals were selected: 12.5-20 mm slack coal, 4-12.5 mm slack coal, 8-12.5 mm coal dust, <8 mm coal dust

10

x [mm]

x50=2.3 mm x80=5.2 mm

15

20

25

F(x)

Characterization of the coal

Slack coal (12.5-20 mm)

Coal dust (8-12.5 mm)

Slack coal (4-12.5 mm)

Coal dust (<8 mm)

Characterization of the coal

Dertials size of the seal	Maistura contant (0/)	Ash content (%)		
Particle size of the coar	Moisture content (%)	dry	wet	
Slack 12.5-20 mm	19.91	11.34	9.08	
Slack 4-12.5 mm	22.33	8.57	6.66	
Dust 8-12.5 mm	20.33	14.83	11.82	
Dust <8 mm	20.48	19.77	15.72	

Partiala size of the seal	Single point BET	Multi point BET	Langmuir
Particle size of the coar	m^{2}/g	$m^{2/g}$	$m^{2/g}$
Slack 12.5-20 mm	12.5950	13.2517	18.4102
Slack 4-12.5 mm	39.9550	42.3417	59.5620
Dust 8-12.5 mm	29.0268	30.5753	42.8981
Dust <8 mm	17.1196	18.1722	25.4592

Characterizazion of the coal

• The relationship between specific surface and average particle size is ambivalent, probably due to the high ash-forming mineral content of the finest fraction

Adsorption measurements

- Batch experiments until the adsorption equilibrium is reached at different heavy metal concentrations
- S:L = 1:10 or 1:40 m/m (2.5-10 g adsorbent + 100 g dist. water)
- Adjustment of pH to 5.0-5.2 (adsorption is strongly pH dependent)
- Heavy metal ions: Pb²⁺ and Cd²⁺.
- Anions: NO³⁻ és CH3COO⁻.
- Adjusted heavy metal concentrations: 20, 50, 80, 100, 200, 300, 400, 600, 800 és 1000 mg/L.
- Contact time in a Wise Cube shaking machine: 4 h at 150 min⁻¹, temperature was 25°C.
- After shaking, S/F phase separation with filtering, then preservation of the solution
- Chemical analysis: Philips PU 9100 X atomic absorption spectrometer (Department of Chemistry)

Adsorption measurements

Shaking machine

Filtration

Filtrate samples before chemical analysis

• The adsorption capacity of the coal $(q_{eq}, mmol/g)$ at equilibrum state was calculated with the following relationship:

$$q_{eq} = \frac{(c_0 - c_{eq}) \cdot V}{m}$$

c₀: concentration before adsorption in the solution [mmol/L]
c_{eq}: equilibrium metal ion concentration in the solution [mmol/L]
V: volume of the solution [L]
m: weight of the adsorbent [g]

 q_{eq} - c_{eq} measurement points \rightarrow constants of different adsorption isotherms can be determined

Tested models: Tóth, Langmuir and Freundlich adsorption isotherms Regression and correlation analysis

Isotherms: suitable to describe adsorption from liquid phase. Most frequently used isotherms (also used by us): Langmuir-isotherm, Tóthisotherm, Freundlich-isotherm.

Langmuir isotherm:

$$q_{eq} = q_{max} \frac{c_{eq}}{b + c_{eq}}$$

Two constants: q_{max} (maximum adsorption capacity) and b (corresponds to $1/K_L$, which is the equilibrium constant of the adsorption-desorption process) Presumes monolayer adsorption, a definite number of equivalent adsorption sites, reversible adsorption.

Tóth isotherm:

$$q_{eq} = \frac{q_s c_{eq}}{(b_t + c_{eq}^t)^{\frac{1}{t}}} , \qquad t \neq 0$$

Three constants, maximum adsorption capacity, $b=1/K_L$ and t Tóth isotherm constant, the so-called heterogenity constant;

Freundlich isotherm:

$$q_{eq} = K_F \cdot c_{eq}^n$$

Entirely empiric (unlike the other two isotherms). Two constants: maximum capacity and adsorption exponent.

Aim: to select one general isotherm for the evaluation of our measurement results

The decision was made by considering:

- Which isotherm describes the physico-chemical process of the adsorption? (physical content of the constants, interpretation of the stages of the isotherm)
- Which one fits the best on the measurement points (correlation coefficient, correlation index, regression coefficients were calculated and compared)

Based on these aspects:

- 1. Tóth
- 2. Freundlich
- 3. Langmuir

Coal	Cation	Anion	x(avg)	Regr. coeff			Corr. factor			Corr. index		
			mm	Lang.	Freund.	Tóth	Lang.	Freund.	Tóth	Lang.	Freund.	Tóth
slack	Cd ²⁺	acetate	0.25-2	0.9877	0.9837	0.9872	0.9930	0.9908	0.9926	0.9929	0.9900	0.9926
dust	Cd ²⁺	acetate	0.25-2	0.9863	0.9926	0.9980	0.9942	0.9961	0.9989	0.9926	0.9954	0.9988
slack	Cd ²⁺	acetate	<0.25	0.9681	0.9568	0.9728	0.9807	0.8733	0.9828	0.9805	0.9686	0.9822
dust	Cd ²⁺	acetate	<0.25	0.9858	0.9909	0.9969	0.9937	0.9952	0.9982	0.9924	0.9944	0.9982
slack	Pb ²⁺	acetate	0.25-2	0.9745	0.9187	0.9790	0.9807	0.9189	0.9881	0.9220	0.5746	0.9763
dust	Pb ²⁺	acetate	0.25-2	0.9557	0.9209	0.9810	0.9774	0.9549	0.9918	0.9670	0.9385	0.9867
slack	Pb ²⁺	acetate	<0.25	0.9741	0.9698	0.9886	0.9859	0.9833	0.9933	0.9854	0.9805	0.9931
dust	Pb ²⁺	acetate	< 0.25	0.8182	0.8083	0.8292	0.8743	0.8656	0.8868	0.8014	0.7931	0.7691

Coal	Cation	Anion	x(avg)	Regr. coeff			Corr. factor			Corr. index		
			mm	Lang.	Freund.	Tóth	Lang.	Freund.	Tóth	Lang.	Freund.	Tóth
slack	Cd ²⁺	acetate	0.25-2	1	3	1	1	3	1	1	3	1
dust	Cd ²⁺	acetate	0.25-2	3	2	1	3	2	1	3	2	1
slack	Cd ²⁺	acetate	<0.25	2	3	1	2	3	1	2	3	1
dust	Cd ²⁺	acetate	<0.25	3	2	1	3	2	1	3	2	1
slack	Pb ²⁺	acetate	0.25-2	2	3	1	2	3	1	2	3	1
dust	Pb ²⁺	acetate	0.25-2	2	3	1	2	3	1	2	3	1
slack	Pb ²⁺	acetate	<0.25	2	3	1	2	3	1	2	3	1
dust	Pb ²⁺	acetate	<0.25	2	3	1	2	3	1	1	3	3
			SUM	17	22	8	17	22	8	16	22	10

S/L=1:10 Effect of the particle size can be seen Coal dust > Slack coal (different composition)

Nitrate anions vs. acetate anions: no significant difference in Pb²⁺ adsorption on coal

Comparison of adsorption capacity of coal and zeolite (x_{avg} : 0.3 mm) S/L=1/40, Cd²⁺, Tóth isotherms

S/L=1:40 Effect of the particle size can be seen Coal dust > Slack coal (different composition); Pb²⁺>Cd²⁺

Linear relationship within the investigated interval

Zeta potential changes during adsorption

Zeta potential changes during adsorption

Physisorption or specific sorption – can be decided by observing the changes in zeta potential

Surface is negatively charged, Pb^{2+} and Cd^{2+} (positive ions) are present:

-if zeta potential becomes less negative as expected, mechanism of adsorption is physisorption (Pb²⁺ adsorption on slack coal)

-if zeta potential becomes more negative, different processes take place, mechanism of adsorption is specific sorption (Cd^{2+} adsorption on all coals, Pb^{2+} adsorption on <8 mm coal dust)

Differences in Pb²⁺ adsorption between coal types!

Coal dust x<8 mm – after 4 h contact

Blue: in distilled water, green: in cadmium nitrate, red: in lead nitrate difference between lead and cadmium adsorption

Slack coal 12.5-20 mm – after 4 h contact

Blue: in distilled water, green: in cadmium nitrate, red: in lead nitrate difference between lead and cadmium adsorption

Slack coal 4.5-12 mm – after 4 h contact

Blue: in distilled water, green: in cadmium nitrate, red: in lead nitrate difference between lead and cadmium adsorption

As a result of the adsorption, intensity at O-bearing functional group peaks decreases

It can be concluded that the FT-IR measurement results correspond with the differences noticed during the zeta potential measurements:

Different types of sorption: <8 mm coal dust vs. two slack coal types (different ash content, Si-O)

There are significant differences between the Cd²⁺ and Pb²⁺ adsorption as well.

(Physisorption vs. specific sorption)

Different mineral composition can be the reason for different adsorption mechanism, adsorption capacity and differences in FT-IR measurements, zeta potential measurements

PHASE NAME (%)	SLACK
Quartz	3,8 🛠
Kaolinit	3,7
Illite/smectite 11A	13,2
Gypsum	1,3
Illite 2M1	9,8
Smectite	11,1
Röntgen amorphous	57,0
TOTAL	100,0

PHASE NAME (%)	DUST
\$ Quartz	9,2
Kaolinit	11,5
Gypsum	1,3
Illite 2M1	15,6
Calcite	1,4
Pyrite	0,6
Siderite	0,4
Boehmite	1,4
\$ Illite/smectite 12A	2,4
Anhydrite	0,9
Röntgen amorphous	55,1
TOTAL	100,0

Higher adsorption capacity

Can be reached by:

- Crushing the coal
- Increasing contact time (e.g. 1 week)
- Decreasing the S/L ratio by using less coal
- Aiming at reaching higher maximum c_{eq} values by using higher heavy metal concentration solutions

S/L ratio=1:40, <250 microns: 0.3548 mmol/g Pb²⁺

S/L ratio=1:100, <250 microns, 1 week treatment (4 hours of shaking every day): 0.481 mmol/g Pb²⁺, but still at low c_{eq} , estimated c_{eq} by extrapolation: 1.04 mmol/g Pb²⁺

For Cd²⁺, values of 0.2 mmol/g can be reached

Comparison with other coals

Difficult to be made, reasons:

- Adsorption of similar Hungarian coals were investigated by using different metal ions
- Particle size was different
- pH was different
- Coals were pre-treated to improve adsorbing capacity

Possible solutions:

- Trying to estimate it by comparing different ion adsorbing capacities (adsorption affinity is known):
 Pb > Cr3+ > Fe2+ > Cu > Zn > Cd > Co > Ni
- Comparing the data with international data.

Overall, from adsorption data it can be presumed that the Bakonyoszlop coal has a good adsorption capacity related to other Hungarian lower rank coals.

Thank you for your attention!

The experimental work was carried out as a part of "Development of bio raw materials products range with a special regard to the local technology – reseArch on the possibility of utilisation by technological ,optimisation' GINOP-2.2.1-15-2017-00069 R&D Project.